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Practical considerations for industrial use
Given:

1. High fidelity, nonlinear simulation
a) Environmental/sensor noise
b) Uncertain parameters

2. Certification requirements

Analysis workflow:
1. Linearization including model uncertainties

a) Construction of this model from nonlinear simulation is not completely automated and
often requires domain expertise.

2. Linear analyses
a) Further development of the algorithm for numerical reliability
b) Extension of the algorithm to more general uncertainties, e.g. delays, sector-bounded

nonlinearities.
c) Compare different metrics (H∞, multi-frequency, H2) for their engineering relevance.

3. Monte Carlo simulations on high fidelity model
a) Study ”bad” uncertainties from linear analysis to complement random samples. Generate

several worst-cases based on different assumptions, e.g. frequency range of disturbances.
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