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Abstract

A discrete-time financial market model is considered with a sequence of investors
whose preferences are described by concave strictly increasing functions defined on the
whole real line. Under suitable conditions we prove that, whenever their absolute risk-
aversion tends to infinity, the respective utility indifference prices of a given bounded
contingent claim converge to the superreplication price. We also prove that the optimal
strategies asymptotically superreplicate the claim.

Keywords: derivative pricing, utility indifference price, superreplication, utility maximiza-
tion.

1 Introduction

We consider a sequence of investors indexed by n; preferences of investor n are expressed via
the choice of his or her concave strictly increasing utility function Un with dom(Un) = R.
The utility indifference price (also called Hodges-Neuberger price or reservation price) for
the seller of a contingent claim has been introduced by Hodges and Neuberger (1989). It
is the minimal amount a seller should add to his or her initial wealth so as to reach an
optimal expected utility when delivering the claim which is greater than or equal to the
one he or she would have obtained trading in the basic assets only. The superreplication
price is the minimal initial wealth needed for hedging the claim without risk; this is thus a
utility-free pricing concept.

We will prove that (under appropriate conditions) the convergence of utility indifference
prices to the superreplication price takes place for bounded contingent claims when the
absolute risk-aversion rn = −U ′′

n/U ′
n of the respective agents tends to infinity.

Up to now, this result was known for exponential utility function or for utility functions
with domain dom(Un) = (0,∞) (see Carassus and Rásonyi (2005) for this latter result and
also for further references).
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To study the Hodges-Neuberger price, it is necessary to solve the corresponding util-
ity maximization problem. As usual, the whole real line case is more difficult to treat.
Surprisingly, when rn goes to infinity, we don’t need to impose the “asymptotic elasticity”
condition on Un (see Kramkov and Schachermayer (1999)) to prove the existence of optimal
strategies, for n big enough.

We also prove that the optimal strategies asymptotically superreplicate the claim.
In section 2 we present the model and main results. Section 3 sums up a few facts

about utility maximization. Section 4 proves the main results. The appendix contains
some technical results used in the proofs.

2 Definitions, assumptions and result

Let (Ω,F , (Ft)0≤t≤T , P ) be a discrete-time filtered probability space with time horizon
T ∈ N. We assume that F0 coincides with the family of P -zero sets. If Y is a random
variable, we denote by supω∈Ω Y its essential supremum (in R ∪ {∞}).

Let {St, 0 ≤ t ≤ T} be a d-dimensional adapted process representing the discounted
(by some numéraire) price of d securities in a given economy. The notation ∆St := St−St−1

will often be used.
Trading strategies are given by d-dimensional processes {φt, 1 ≤ t ≤ T} which are

supposed to be predictable (i.e. φt is Ft−1-measurable). The class of all such strategies
is denoted by Φ. Denote by L∞, L∞

+ the sets of bounded, nonnegative bounded random
variables, respectively, equipped with the supremum norm ‖ · ‖∞. Trading is assumed to
be self-financing, so the value process of a portfolio φ ∈ Φ is

V z,φ
t := z +

t
∑

j=1

〈φj , ∆Sj〉,

where z is the initial capital of the agent in consideration and 〈·, ·〉 denotes scalar product
in R

d.
The following absence of arbitrage condition is standard:

(NA) : ∀φ ∈ Φ (V 0,φ
T ≥ 0 a.s. ⇒ V 0,φ

T = 0 a.s.).

However, we need to assume a certain strengthening of the above concept hence an alter-
native characterization is provided in the Proposition below. Denote by Dt(ω) the smallest
affine hyperplane containing the support of the (regular) conditional distribution of ∆St

with respect to Ft−1, see Proposition 8.1 of Rásonyi and Stettner (2005) for more infor-
mation about the random set Dt. Let Ξt denote the set of Ft-measurable d-dimensional
random variables,

Ξ̃t := {ξ ∈ Ξt : ξ ∈ Dt+1 a.s., |ξ| = 1 on {Dt+1 6= {0}}}.

Proposition 2.1 (NA) holds iff there exist Ft-measurable, strictly positive, random vari-
ables κt, βt, 0 ≤ t ≤ T − 1 such that

ess. inf
ξ∈Ξ̃t

P (〈ξ,∆St+1〉 < −βt|Ft) > κt a.s. on {Dt+1 6= {0}}. (1)
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Proof. The direction (NA) ⇒ (1) is Proposition 3.3 of Rásonyi and Stettner (2005). The
other direction is clear from the implication (g) ⇒ (a) in Theorem 3 of Jacod and Shiryaev
(1998). 2

In Theorems 2.5 and 2.7 a strengthening of this condition will be required. Similar
“uniform no arbitrage” assumptions appear in Schäl (1999,2000).

Assumption 2.2 There exist constants β, κ > 0 such that

ess. inf
ξ∈Ξ̃t

P (〈ξ,∆St+1〉 < −β|Ft) > κ a.s. on {Dt+1 6= {0}}.

Fix G ∈ L∞
+ , a random variable which will be interpreted as the payoff of some derivative

security at time T .
The concept of superreplication price is formally introduced as the minimal initial wealth

needed for hedging without risk the given contingent claim:

π(G) := inf{z ∈ R : V z,φ
T ≥ G a.s. for some φ ∈ Φ}.

We go on incorporating a sequence of agents in our model with concave utility functions
Un. The functions rn below express the absolute risk-aversion of the respective agents.

Assumption 2.3 Suppose that Un : R → R, n ∈ N is a sequence of concave strictly
increasing twice continuously differentiable functions such that

∀x ∈ R rn(x) := −
U ′′

n(x)

U ′
n(x)

→ ∞, n → ∞.

Now define

un(G, z) := sup
φ∈Φ(Un,G,z)

EUn(V z,φ
T − G), (2)

where Φ(Un, G, z) denotes the family of strategies φ ∈ Φ such that EUn(V z,φ
T − G) exists.

The quantity un(G, z) represents the supremum of expected utility from initial capital z
delivering a contingent claim with payoff G at the terminal date.

Definition 2.4 The utility indifference price pn(G, x) is defined as

pn(G, x) = inf{z ∈ R : un(G, x + z) ≥ un(0, x)}.

In the following Theorem, we show that due to the specific convergence of Un (see
Lemma 5.4) when n goes to infinity, we can construct the optimal strategies ψ∗

n(z), for n
big enough, without the usual “asymptotic elasticity” conditions. Moreover, we prove that
pursuing the optimal strategies one can asymptotically super-replicate the given claim.

Theorem 2.5 Suppose that S is bounded, Assumptions 2.2 and 2.3 hold.
Then, there exists N0 ∈ N, such that for all n ≥ N0 and z ∈ R, the utility maximization
problem (2) admits optimal solutions ψ∗

n(z).
Furthermore, for any z ≥ π(G),

lim
n→∞

P (V
z,ψ∗

n(z)
T ≥ G) = 1.
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Remark 2.6 For T = 1, we will show in Theorem 3.1 that there exists some subsequence
(nk)k≥0 converging to the constant ψ̃ and such that ψ∗

nk
(π(G)) → ψ̃ and ψ̃ is a superhedging

strategy for G.
This result have been obtained under different conditions by Summer (2002) and Cherid-

ito and Summer (2003). More precisely, they introduced special super replication strategies,
called balanced strategies, and they showed that the distance between the set of such strate-
gies and the optimal ones goes to zero if limn infx∈R rn(x) = +∞.

One would also conjecture that the optimal strategies converge to some superreplication
strategy. This is, however, false, see the example of Cheridito and Summer (2003).

We wish to find conditions on S and Un which guarantee that pn(G, x) tends to π(G)
whenever Assumption 2.3 holds.

Theorem 2.7 Suppose that S is bounded, Assumptions 2.2 and 2.3 hold. Then for each
x0 ∈ R the utility prices pn(G, x0) are well-defined (for n sufficiently large) and converge
to π(G) as n → ∞.

Remark 2.8 We present a proof of these results working on the primal problem only. It
is possible to prove them under very similar assumptions relaying on duality techniques.
However, the latter method would necessitate that we use a class of strategies which is
unnatural in the discrete-time context and would also require an analysis of the structure
of equivalent martingale measures, hence we opted for the present approach.

3 Utility maximization

In this section we use a dynamic programming procedure to prove the existence of optimal
strategies and to derive bounds on them. We first introduce the recursive superreplication
price of any G ∈ L∞

+ :

πT (G) := G,

πt(G) = ess. inf{X : σ(X) ⊂ Ft,∃φ ∈ Ξt such that

X + 〈φ, ∆St+1〉 ≥ πt+1(G) a.s.},

for 0 ≤ t ≤ T − 1. Note that π0(G) can be chosen constant, by the triviality of F0. It is
easy to see that π0(G) = π(G) (see Proposition 5.1) and that 0 ≤ πt(G) ≤ ‖G‖∞.

We will also use the following sets : VT = {0} and for 0 ≤ t ≤ T − 1

Vt := {
T

∑

j=t+1

〈ζj , ∆Sj〉, ζj ∈ Ξj−1, j = t + 1, . . . , T}. (3)

Interestingly enough, the following Theorem provides optimal strategies (for n large
enough) without the usual “asymptotic elasticity” conditions and derives bounds on them,
which are crucial in the sequel. Convergence properties of the value function are also
established here.

Theorem 3.1 Suppose that S is bounded and Assumptions 2.2, 2.3 and Un(0) = 0, U ′
n(0) =

1 hold for all n ∈ N. Then there exist constants Ns, 0 ≤ s ≤ T such that for n ≥ Ns the
random functions Un,s below are well defined and finite:

Un,T (x) := Un(x − G),

Un,s(x) := ess. sup
ξ∈Ξs

E(Un,s+1(x + 〈ξ,∆Ss+1〉)|Fs), 0 ≤ s ≤ T − 1,
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we also have for all x, y ∈ R

−∞ < EUn,s(x + y∆St) < ∞. (4)

The functions Un,s have almost surely concave and increasing continuously differentiable
versions. For all 1 ≤ s ≤ T , n ≥ Ns and x ∈ R, there exists ξ̃n,s(x) ∈ Ξs−1 such that
ξ̃n,s ∈ Ds a.s. and

Un,s−1(x) = E(Un,s(x + 〈ξ̃n,s(x), ∆Ss〉)|Fs−1), (5)

U ′
n,s−1(x) = E(U ′

n,s(x + 〈ξ̃n,s(x), ∆Ss〉)|Fs−1). (6)

For all 1 ≤ s ≤ T , there exist nondecreasing functions Ms and M̂s : R+ → R+ such that
for all n ≥ Ns and x ∈ R:

|ξ̃n,s(x)| ≤ M̂s(x), (7)

Un(x − Ms(|x|)) ≤ Un,s(x) ≤ Un(x + Ms(|x|)). (8)

Furthermore, for all 0 ≤ s ≤ T and x ∈ R

sup
ω∈Ω

Un,s(x) → 0 on {x ≥ πs(G)}. (9)

For all 0 ≤ s ≤ T and ε > 0,

Un,s(πs(G) − ε) → −∞ (10)

almost surely.
For all 1 ≤ s ≤ T , there exist some random subsequence (σk,s)k≥0 and an Fs−1-measurable
random variable ξ̃s such that ξ̃σk,s,s(πs−1(G)) → ξ̃s a.s and (ξ̃s)1≤s≤T is a superhedging
strategy for G.

For all n ≥ N0, z ∈ R the utility maximization problems

EUn(V z,ψ
T − G) → max., ψ ∈ Φ(Un, G, z),

admit optimal solutions ψ∗
n(z) given by

ψ∗
n,1(z) := ξ̃n,1(z), ψ∗

n,t+1(z) := ξ̃n,t+1(z +

t
∑

k=1

〈ψ∗
n,k(z), ∆Sk〉) (11)

There exists nondecreasing functions Υt : R+ → R+ such that for all n ∈ N, z ∈ R

|ψ∗
n,t(z)| ≤ Υt(|z|). (12)

and the value functions of the optimization problems are finite, i.e.

un(G, z) = Un,0(z) < ∞.

Corollary 3.2 Under the conditions of Theorem 3.1, there exist nondecreasing functions
Ft : R+ → R+, 0 ≤ t ≤ T such that for all n ∈ N

|V
z,ψ∗

n(z)
t | ≤ Ft(|z|) a.s.

for the optimal strategies ψ∗
n(z) constructed in the previous Theorem.
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Proof of Corollary 3.2. Indeed, define Ft(u) := u + R
[

∑t
j=1 Υj(u)

]

. 2

Proof of Theorem 3.1. Suppose d = 1 for notational simplicity and let R denote a constant
bound for the process |∆S|.

Results of Rásonyi and Stettner (2005) will be used, namely Propositions 4.4 to 4.6,
Propositions 4.9, 4.10 and 6.5. Note that those propositions do not rely on the “asymptotic
elasticity” property which is crucial to prove the existence of optimal strategy in the cited
paper. To achieve the same goal without this hypothesis, we will carry out the estimations
in a different way.

We shall apply backward induction to prove (4) to (10). First for s = T , set NT = 0,
(4) and (8) are trivial ; (9) and (10) hold by Lemma 5.4. From Proposition 4.4 and
Proposition 6.5 of Rásonyi and Stettner (2005), Un,T−1 have almost surely concave and
increasing continuously differentiable versions. Finally, (5), (6) and (7) will follow just like
in the induction step below.

Let us proceed supposing that the induction hypotheses hold for s ≥ t+1. We get from
(7) for s = t + 1 that

x + ξ̃n,t+1(x)∆St+1 ∈ [x − M̂t+1(|x|)R, x + M̂t+1(|x|)R],

and from (8) for s = t + 1

Un,t+1(x + M̂t+1(|x|)R) ≤ Un

(

x + M̂t+1(|x|)R + Mt+1(|x| + M̂t+1(|x|)R)
)

because Mt+1 and Un are nondecreasing. Also

Un,t+1(x − M̂t+1(|x|)R) ≥ Un

(

x − M̂t+1(|x|)R − Mt+1(|x| + M̂t+1(|x|)R)
)

.

Defining

Mt(u) := M̂t+1(u)R + Mt+1(u + M̂t+1(u)R), u ∈ R+,

Mt is nondecreasing as M̂t+1 and Mt+1 are. Using (5) for s = t+1 and the fact that Un,t+1

is nondecreasing, we get that almost surely

Un(x − Mt(|x|)) ≤ Un,t(x) ≤ Un(x + Mt(|x|)),

showing (8) for s = t. Moreover, as S is bounded, it is easy to see that (4) holds true for
s = t−1. So we can again apply Proposition 4.4 of Rásonyi and Stettner (2005) and Un,t−1

have almost surely concave and increasing versions.
It turns out that Un,t(πt(G)) is nonnegative. Indeed, take a strategy φ̂ such that πt(G)+

φ̂∆St+1 ≥ πt+1(G) almost surely. Then we have

Un,t(πt(G)) = ess. sup
φ

E(Un,t+1(πt(G) + φ∆St+1)|Ft)

≥ E(Un,t+1(πt(G) + φ̂∆St+1)|Ft) ≥ E(Un,t+1(πt+1(G))|Ft)

≥ E(E(Un,t+2(πt+2(G))|Ft+1)|Ft) ≥ . . . ≥ E(Un,T (G)|Ft)

≥ Un(0) = 0.

Then for {x ≥ πt(G)}, we get from (8) for s = t that

0 ≤ Un,t(x) ≤ Un,t(x + ‖G‖∞)

≤ Un(x + ‖G‖∞ + Mt(x + ‖G‖∞)).
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Thus supω∈Ω Un,t(πt(G)) → 0 by Lemma 5.4 and we get that (9) holds for s = t.
Now we establish the existence of optimal strategies. To this end, we need two auxiliary

results.

Lemma 3.3 Under the induction hypothesis, for each 0 ≤ t ≤ T and y > ‖G‖∞,

sup
ω∈Ω

U ′
n,t(y) → 0.

Proof. By the induction hypotheses Un,t is continuously differentiable and we can write
that a.s.

Un,t(‖G‖∞) +

∫ y

‖G‖∞

U ′
n,t(w)dw = Un,t(y).

We have, by monotonicity of the derivative,

U ′
n,t(y)[y − ‖G‖∞] ≤

∫ y

‖G‖∞

U ′
n,t(w)dw ≤ |Un,t(y)| + |Un,t(‖G‖∞)|,

so the statement follows by (9) for s = t and πt(G) ≤ ‖G‖∞. 2

Proposition 3.4 Assume the induction hypothesis and let x ∈ R. There exist an in-
creasing function M̂t(·) : R+ → R+ such that for any ξ ∈ Ξt, ξ ∈ Dt+1 a.s. satisfying
|ξ| > M̂t(|x|),

E(Un,t(x + ξ∆St)|Ft−1) < E(Un,t(x)|Ft−1), (13)

for n > Nt, where Nt is a suitable constant.

Proof. Fix x ∈ R and suppose that n ≥ Nt+1. Let ξ ∈ Ξt, ξ ∈ Dt+1 a.s satisfying

|ξ| >
x

β
. (14)

Let Vn be the “optimal continuation” from x+ξ∆St for the utility Un,t. To write it formally,
we introduce the following

φn,t+1 := ξ̃n,t+1(x + ξ∆St),

φn,j+1 := ξ̃n,j+1(x + ξ∆St +

j
∑

k=t+1

φn,k∆Sk) for j = t + 1, . . . , T − 1,

Vn :=
T

∑

k=t+1

φn,k∆Sk.

It is clear that Vn ∈ Vt. By (5) for s = t + 1, . . . , T and Proposition 4.10 of Rásonyi and
Stettner (2005), we obtain that,

E(Un,t(x + ξ∆St)|Ft−1) = E(Un(x + ξ∆St + Vn − G)|Ft−1)

≤ E(Un(x − β|ξ|)I{ξ∆St+Vn<−β|ξ|}|Ft−1) + E(Un,t(|x| + 2‖G‖∞ + |ξ|R)|Ft−1).

Note first that Un(x − β|ξ|) ≤ Un(0) = 0 from (14) and also that

Un,t(|x| + 2‖G‖∞ + |ξ|R) ≥ E(Un,t+1(|x| + 2‖G‖∞ + |ξ|R)|Ft)

≥ E(Un,T (|x| + 2‖G‖∞ + |ξ|R)|Ft) ≥ Un(0) = 0.
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Thus by Proposition 5.2, we obtain

E(Un,t(x + ξ∆St)|Ft−1) ≤ κT−t+1Un(x − β|ξ|) + E(Un,t(|x| + 2‖G‖∞ + |ξ|R)|Ft−1). (15)

Continue the estimation of the first term of the right-hand side of inequality (15):

κT−t+1Un(x − β|ξ|) =
κT−t+1

2
Un(x − β|ξ|) +

κT−t+1

2
Un(x − β|ξ|)

≤ Un(
κT−t+1

2
(x − β|ξ|)) +

κT−t+1

2

[

Un(x −
β|ξ|

2
) −

β|ξ|

2
U ′

n(x −
β|ξ|

2
)

]

,

where we used concavity of Un. Choose ξ such that, in addition to (14), both

x −
β|ξ|

2
< −1, (16)

κT−t+1

2
(x − β|ξ|) < x − Mt(|x|), (17)

hold. For the estimation of the second term of the right-hand side of (15), we use concavity
of Un,t and (8) for s = t to see that

Un,t(|x| + 2‖G‖∞ + |ξ|R) ≤ Un,t(|x| + 2‖G‖∞) + U ′
n,t(|x| + 2‖G‖∞)|ξ|R

≤ Un(|x| + 2‖G‖∞ + Mt(|x| + 2‖G‖∞)) + U ′
n,t(2‖G‖∞)|ξ|R

≤ |x| + 2‖G‖∞ + Mt(|x| + 2‖G‖∞) + U ′
n,t(2‖G‖∞)|ξ|R,

as Un(0) = 0 and U ′
n(0) = 1. So we get that by (16) and (17) that

E(Un,t(x + ξ∆St)|Ft−1) < Un(x − Mt(|x|))

+|ξ|

[

U ′
n,t(2‖G‖∞)R −

βκT−t+1

4
U ′

n(−1)

]

+|x| + 2‖G‖∞ + Mt(|x| + 2‖G‖∞) + (κT−t+1/2)Un(−1)].

Here the first term is ≤ Un,t(x) by (8). Note also that Un(−1) ≤ 0. Now by Lemma 3.3
and Lemma 5.4, there exists some Nt ≥ Nt+1 such that for n ≥ Nt,

U ′
n,t(2‖G‖∞)R −

βκT−t+1

4
U ′

n(−1) ≤ −1.

Thus

E(Un,t(x + ξ∆St)|Ft−1) < E(Un,t(x)|Ft−1) − |ξ| + |x| + 2‖G‖∞ + Mt(|x| + 2‖G‖∞).

Choosing M̂t so large that if |ξ| > M̂t(|x|), then |ξ| > |x| + 2‖G‖∞ + Mt(|x| + 2‖G‖∞),
(14), (16) and (17) are satisfied. 2

Using Proposition 3.4 and a compactness argument, we are now able to prove that a
bounded optimal strategy ξ̃n,t(x) exists for x ∈ [0, 1] (which implies the existence on the
whole real line).

Take a jointly measurable sequence {ξk
n,t(x, ω), k ∈ N} attaining the essential supre-

mum in the definition of Un,t (constructed in Lemma 4.5 of Rásonyi and Stettner (2005))
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By Proposition 4.6 of the same paper we may suppose that ξk
n,t(x) ∈ Dt a.s. Let A =

{|ξk
n,t(x)| > M̂t(x)} ∈ Ft−1. From Proposition 3.4,

E(Un,t(x + ξk
n,t(x)∆St)|Ft−1) ≤ IAE(Un,t(x)|Ft−1) + IAcE(Un,t(x + ξk

n,t(x)∆St)|Ft−1)

≤ E(Un,t(x + ξk
n,t(x)IAc)∆St)|Ft−1),

with strict inequality on A. Call

ζk
n,t(x) := ξk

n,t(x)IAc ,

by optimality we can replace the sequence {ξk
n,t(x), k ∈ N} by {ζk

n,t(x), k ∈ N}.

As M̂t(.) is increasing,
|ζk

n,t(x)| ≤ M̂t(1),

and Lemma 2 of Kabanov-Stricker (2001) proves the existence of a random subsequence σk

such that of ζσk

n,t(x) converges to some limit called ξ̃n,t(x). We have ξ̃n,t(x) ∈ Ξt−1 and ∈ Dt

a.s.
Now by Fatou Lemma (which applied because of (8) for s = t),

Un,t−1(x) = lim sup
k→∞

E(Un,t(x + ζσk

n,t(x)∆St)|Ft−1)

≤ E(Un,t(x + ξ̃n,t(x)∆St)|Ft−1),

which proves (5) and (7) for s = t.
Moreover, we get from Proposition 6.5 of Rásonyi and Stettner (2005) that Un,t−1 has
almost surely continuously differentiable versions and (6) is satisfied for s = t.

To prove (10) for s = t, we first recall that by (5) for s = t, . . . , T and Proposition 4.10
of Rásonyi and Stettner (2005)

Un,t(πt(G) − ε) = E(Un(πt(G) − ε + Vn − G)|Ft)

for some Vn ∈ Vt (the “optimal continuation” from πt(G)− ε). Now apply Lemma 5.3 and
(8) to obtain the estimation

Un,t(πt(G) − ε) ≤ E(Un(−ε/2)Iπt(G)−ε/2+Vn<G|Ft) + Un(‖G‖∞ + Mt(‖G‖∞))

≤ ZUn(−ε/2) + Un(‖G‖∞ + Mt(‖G‖∞)).

Here the second term tends to 0 and the first to −∞, by Lemma 5.4, proving (10).
Now we turn to the proof of the convergence of ξ̃n,t(πt(G)). Suppose that there exists

some K such that for k ≥ K,

P (πt(G) + ξ̃n,t+1(πt(G))∆St+1 ≤ πt+1(G) − 1/k|Ft) > 1/k.

Then as

Un,t(πt(G)) = E(Un,t+1(πt(G) + ξ̃n,t+1(πt(G))∆St+1)|Ft).

We get that

Un,t(πt(G)) ≤ 1/kUn,t+1(πt+1(G) − 1/k) + Un(‖G‖∞ + Mt(‖G‖∞)).
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Here the second term of the right-hand side tends to 0 by Lemma 5.4 and the first to −∞ by
(10) for s = t + 1, contradicting (9) for s = t. Thus there exists some random subsequence
(σk)k≥0 such that

P (πt(G) + ξ̃σk,t+1(πt(G))∆St+1 ≤ πt+1(G) − 1/k|Ft) ≤ 1/k.

From (7) for s = t + 1 and Lemma 2 of Kabanov and Stricker (2001), there exists a
random, Ft-measurable, subsequence (σk)k≥0 (for which we keep the same notation) and
an Ft-measurable random variable ξ̃t+1 such that ξ̃σk,t+1(πt(G)) → ξ̃t+1 a.s.

Let

A = {πt(G) + ξ̃t+1∆St+1 ≤ πt+1(G)}

Ak = {πt(G) + ξ̃σk,t+1(πt(G))∆St+1 ≤ πt+1(G) − 1/k}.

Then it is easy see that A ⊂ lim infk Ak and by Fatou lemma,

P (A|Ft) ≤ P (lim inf
k

Ak|Ft) ≤ lim inf
k

P (Ak|Ft).

So we conclude that

P (πt(G) + ξ̃t+1∆St+1 ≤ πt+1(G)|Ft) = 0.

Summing up all this inequalities, a.s

π(G) +
T

∑

t=1

ξ̃t∆St ≥ G,

and (ξ̃s)1≤s≤T is a superhedging strategy for G
By induction, it is easy to see from (7) that (12) holds with

Υ1(u) = M̂1(u) and Υt+1(u) = M̂t+1

(

u + R
t

∑

s=1

Υs(u)

)

.

It remains to prove that the strategies defined by (11) are optimal.
Just like in Proposition 5.3 of Rásonyi and Stettner (2005), we obtain that for any

trading strategy ψ ∈ Φ(Un, G, z):

E(Un(V z,ψ
T )|F0) ≤ Un,0(z) = E(Un(V

z,ψ∗

n(z)
T )|F0).

As Un,0(z) is finite and F0 is trivial one gets that un(G, z) = Un,0(z) < ∞ and for all

ψ ∈ Φ(Un, G, z), E(Un(V z,ψ
T )) ≤ E(Un(V

z,ψ∗

n(z)
T )) = un(G, z) < ∞. Thus ψ∗

n(z) is the
solution of

EUn(V z,ψ
T ) → max., ψ ∈ Φ(Un, G, z).

and the value functions of the optimization problems are finite, i.e. un(G, z) = Un,0(z) < ∞.
2
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4 Proof of the main results

Proof of Theorem 2.5. By taking Un(x)
U ′

n(0) −
Un(0)
U ′

n(0) instead of Un(x) one may assume Un(0) =

0, U ′
n(0) = 1; this does not affect the validity of Assumption 2.3 and does not change

optimal strategies either. Suppose that n ≥ N0, then from Theorem 3.1, item (11), we get
the existence of the optimal strategies ψ∗

n(z).
If the second part of Theorem 2.5 did not hold, for some ε > 0 one would have

P (V
z,ψ∗

n(z)
T − G ≤ −ε) ≥ ε

(along a subsequence). Then by Corollary 3.2,

un(G, z) = EUn(V
z,ψ∗

n(z)
T − G) ≤ Un(−ε)ε + Un(FT (z)).

Here the second term of the right-hand side tends to 0, the first to −∞, which is nonsense
as un(G, z) → 0 by Theorem 3.1. 2

Proof of Theorem 2.7. Fix x0 ∈ R. Suppose that n ≥ N0, then pn(G, x0) is well

defined. Consider the sequence Vn(x) := Un(x+x0)
U ′

n(x0)
− Un(x0)

U ′

n(x0)
. Then Vn(0) = 0, V ′

n(0) = 1 and

Assumption 2.3 is still valid. We will prove that the corresponding utility prices pVn
(G, 0)

tend to π(G). As obviously pUn
(G, x0) = pVn

(G, 0), this will implied the Theorem.
From now we denote pVn

(G, 0) by pn(G, 0). One may easily check (see the proof of
Theorem 2.6 in Carassus and Rásonyi (2005)) that

pn(G, 0) ≤ π(G).

Now it remains to prove
lim inf
n→∞

pn(G, 0) ≥ π(G). (18)

Suppose that this fails, i.e. for some η > 0 and some subsequence nk

pnk
(G, 0) ≤ π(G) − η

holds, for all k ∈ N. By Definition 2.4,

unk
(G, π(G) − η) ≥ unk

(0, 0).

The liminf of the right-hand side is nonnegative :

lim inf
n→∞

un(0, 0) ≥ lim inf
n→∞

Un(0) = 0.

The left-hand side tends to −∞ by item (10) of Theorem 3.1 for s = 0 and this contradiction
proves (18). 2

5 Appendix

We start this section with an alternative characterization of πt(G).

Proposition 5.1

πt(G) = ess. inf{Y, ∃V ∈ Vt : Y + V ≥ G a.s.}. (19)

In particular,
π0(G) = π(G).
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Proof. Let prove it by induction; the case t = T is trivial. Suppose that the proposition
holds for t + 1. Let Y such that there exists V =

∑T
k=t+1〈φk, ∆Sk〉 ∈ Vt such that

Y + V ≥ G a.s. As
∑T

k=t+2〈φk, ∆Sk〉 ∈ Vt+1, Y + 〈φt+1, ∆St+1〉 ≥ πt+1(G) a.s, by
the induction hypothesis for t + 1. Now by definition of πt(G) we get that Y ≥ πt(G) and

πt(G) ≤ ess. inf{Y, ∃V ∈ Vt : Y + V ≥ G a.s.}.

Conversely, fix ε > 0, by definition of πk(G), there exists {φk, t ≤ k ≤ T − 1} such that
φk ∈ Ξk−1 and

πk(G) +
ε

T − t
+ 〈φk+1, ∆Sk+1〉 ≥ πk+1(G) a.s.

Summing over all k = t, . . . , T − 1,

πt(G) + ε +
T

∑

k=t+1

〈φk, ∆Sk〉 ≥ G a.s.

follows and therefore

πt(G) + ε ≥ ess. inf{Y, ∃V ∈ Vt : Y + V ≥ G a.s.},

so letting ε → 0 achieves the proof of the Proposition. 2

We now deduce two consequences of Assumption 2.2:

Proposition 5.2 For each 1 ≤ t ≤ T and ξ ∈ Ξ̃t−1,

ess. inf
V ∈Vt

P (〈ξ,∆St〉 + V < −β|Ft−1) ≥ κT−t+1,

ess. inf
V ∈Vt

P (V ≤ 0|Ft−1) ≥ κT−t.

Proof. By backward induction. The step t = T is a direct consequence of Assumption 2.2.
Now suppose that the statements are shown for t + 1, let us prove them for t. Let V ∈ Vt

and ξ ∈ Ξt−1,

P (〈ξ,∆St〉 + V < −β|Ft−1) ≥ P (〈ξ,∆St〉 < −β, V < 0|Ft−1)

= E[E[I{V ≤0}|Ft]I{〈ξ,∆St〉<−β}|Ft−1]

≥ κT−t × κ,

by Assumption 2.2 and the induction hypotheses. Similarly, for any V ∈ Vt,

P (V ≤ 0|Ft−1) ≥ P (〈ζt, ∆St〉 ≤ 0, V − 〈ζt, ∆St〉 ≤ 0|Ft−1)

= E[E[I{V −〈ζt,∆St〉≤0}|Ft]I{〈ζt,∆St〉≤−β}|Ft−1]

≥ κT−t−1 × κ.

2

Lemma 5.3 For all ε > 0, we have

Z := ess. inf
V ∈Vt

P (πt(G) − ε/2 + V < G|Ft) > 0,

almost surely.
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Proof of Lemma. Consider the set of all random variables L0 equipped with the topology
of convergence in probability, L0

+ denotes the set of nonnegative random variables. Suppose
that the statement fails and A := {Z = 0} ∈ Ft has positive probability. Define the set

Q := {X ∈ L0 : X = πt(G) − ε/2 + V for some V ∈ Vt} ⊂ L0.

Then there are Vn ∈ Vt such that for

Bn := {πt(G) − ε/2 + Vn ≥ G}

one has P (Bn|Ft) → 1 on A. Consequently,

Yn := IAπt(G) − IAε/2 + IAVn − IAIBn
[πt(G) − ε/2 + Vn − G]

tends to GIA in probability: indeed,

P (Yn 6= GIA) ≤ P (BC
n ∩ A) = E1AP (BC

n |Ft) → 0, n → ∞.

Clearly, Yn ∈ IA(Q − L0
+). Necessarily, GIA ∈ 1A(Q − L0

+), where closure is taken in the
topology of stochastic convergence. But it is well-known (see arguments of Kabanov and
Stricker (2001)) that under (NA) the set 1A(Q − L0

+) is closed in probability. This means

that for some Ṽ ∈ Vt and l ∈ L0
+ we have

GIA = 1Aπt(G) − 1Aε/2 + 1AṼ − 1Al.

For k = t + 1, . . . , T calling φ̂k a super replication strategy for πk(G),

1A(πt(G) − ε/2) + 1Acπt(G) + 1AṼ + 1Ac

T
∑

k=t+1

φ̂k∆Sk+1 ≥ G,

which is contradicts (19), so the statement is proved. 2

We also recall the following Lemma from Carassus and Rásonyi (2005) :

Lemma 5.4 Suppose that Un, n ∈ N satisfy Assumption 2.3 as well as Un(0) = 0, U ′
n(0) =

1, for all n ∈ N. Then

∀y < 0 Un(y) → −∞, n → ∞, ∀y ≥ 0 Un(y) → 0, n → ∞.
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criteria. Séminaire de Probabilités, XXXV, 149–152, Springer, Berlin.

[7] Kramkov, D. O., Schachermayer, W. The asymptotic elasticity of utility functions and
optimal investment in incomplete markets. Ann. Appl. Probab., 9, 904-950. (1999)
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