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ABSTRACT

In this paper, a new algorithm for the cellular active contour
technique called pixel-level snakes is proposed. The moti-
vation is twofold: On the one hand a higher efficiency and
flexibility in the contour evolution towards the boundaries
of interest is pursued. On the other hand a higher perfor-
mance and suitability for its hardware implementation onto
a CNN chip-set architecture is required. To illustrate the
validity of the proposal some examples and data about the
computation time extracted from the implementation of the
algorithm on the 64x64 CNNUM chip have been included.

1. INTRODUCTION

An active contour is defined as an elastic curve which
deforms controlled by image features and shape constraints
to adapt itself to the boundaries of the objects of interest.
Among the different approaches the cellular active contours
(CAC) appear originally intended to resolve the high com-
putational cost inherent to the classical active contours tech-
niques. They are based on a pixel-level discretization of the
contours and on a massively parallel computation on every
contour cell which leads to high speed processing without
penalizing the efficiency of the contour location.

Up to the present two different cellular active contour
approaches have been proposed. In [1] an active wave com-
puting approach is introduced. This consist of a topographic
non-iterative region propagation algorithm where the con-
tours come defined by the fronts of travelling waves. This
approach has demonstrated a high flexibility in the con-
tour evolution and gives a simple solution to the changes
of topology required when two different wavefronts collide.
Nevertheless sophisticated stop criteria are usually required
to control conveniently the wave-front propagation which
may increase considerably the computation complexity in
real applications.
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In [2] the called pixel-level snakes (PLS) are addressed.
They represent a topographic iterative active contour algo-
rithm where the contours are explicitly represented and guided
by potential fields. Although this strategy has demonstrated
a good performance in multiple applications ([3]), it presents
some limitations and exceptions which reduce its efficiency.

Keeping in mind the characteristics of the commented
CAC techniques, we propose an improved algorithm for
PLS which performs a better contour evolution and a more
efficient management of the topological transformations. In
addition the hardware implementation of the algorithm is
considerably simplified. This has been tested on the 64x64
CNNUM chip ([4, 5]). All the examples used to illustrate
the capabilities of the proposal has been obtained from the
processing of the algorithm on the chip.

2. IMPROVED PIXEL-LEVEL SNAKES

Into the context of PLS, the active contours are repre-
sented as sets of 8-connected activated pixels into a binary
image called contour image. This has the same dimensions
as the image containing the objects or regions to be defined.
The contour evolution consists on an iterative process of ac-
tivation and deactivation of the contour image pixels along
the four cardinal directions. These operations are driven by
external information extracted from the image under pro-
cessing and internal information derived from the contours
themselves. The result is equivalent to contour shifts to-
wards final shapes and locations according with the require-
ments from the guiding information. The guiding informa-
tion is represented by scalar (or vectorial) potential fields
extended to all pixels of the image under processing.

Conceptually the PLS consist of three different modules
which interact dynamically: Guiding information, contour
evolution and topologic transformations. In the following,
the main operations to carry out in these modules are ana-
lyzed and their deficiencies are approached.



2.1. Guiding information

The components of the guiding forces along the direc-
tion under processing are derived from the external and in-
ternal potential matrices by simple directional gradient op-
erations. Since a positive force should indicate a valid direc-
tion for the contour evolution only its sign is needed. There-
fore in this stage a thresholding operation is also included.
These operations are gathered into the called guiding force
extraction module (GFE).

The external potential is extracted from the image to be
processed and its nature depends on the particular applica-
tion. It represents an external input to the PLS algorithm.
On the other hand the internal potential is derived directly
from the active contours. This is estimated by a recursive
low-pass filtering or diffusion operation acting on the con-
tour image. The result is a real-valued array characterized
by lower potential values into the cavities of the contour and
higher outside. Therefore a directional gradient operation
acting on this array will originate positive internal forces
which push to reduce the local curvature and therefore to
smooth the contour shape [3].

Numerous provisions have been made in the literature
to improve the robustness and stability of the active contour
evolution. Towards this direction in [6] aballoon forcehas
been introduced to the parametric deformable models. This
new term comes from an anisotropic pressure potential that
controls the evolution of the contours helping them to tres-
pass spurious isolated weak image edges and counters their
tendency to shrink (due to the internal forces). The PLS can
effectively inflate (compress) the contours by adding higher
(lower) potential terms to those locations inside the closed
curves with respect to those situated outside (Fig. 1). The
process is mainly supported by a weighted hole filling op-
eration. The sign of the weight constant will determine the
inflating or deflating nature of the potential.
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Fig. 1. Generation of inflating/deflating potentials for PLS.
Lower potential is represented by higher intensity.

2.2. Contour evolution

To produce the desired contour evolution a directional
contour expansion (DCE) of the active contours followed by
a directional contour thinning (DCT) are carried out along
the direction under processing. In the original PLS algo-
rithm, both DCE and DCT operations can only act on those
locations which coincide with activated pixels in the GFE
output. Since the expansion and the thinning operations
affect to different pixels they rely on different guiding in-
formation. Therefore to avoid the appearance of ill-defined
contours the DCE operation is restricted to only contour
duplications. This approach for the contour evolution pro-
vokes the appearance of ascatteringeffect when a contour
is anchored in one or more pixels.

We have proved that a non-constrained thinning opera-
tion can support the effective contour evolution making the
requirement of only contour duplications unnecessary. This
small but critically important change leads to a more effi-
cient contour evolution which relies on only one external
constraint (the DCE driving). Furthermore, since the con-
tour expansion is not restricted to only duplications the scat-
tering effect disappears as it is illustrated in Fig. 2.

Fig. 2. In this example an active contour evolves towards
higher intensities. One pixel in the upside of the contour
becomes anchored based on the guiding information which
provokes the scattering effect form the original PLS algo-
rithm (first row). This effect does not appear in the im-
proved version (second row).

One important limitation strongly related with the scat-
tering effect, appears in those applications where evolutions
along very narrow cavities are involved. The new approach
allows to reach deep locations as it is illustrated in Fig. 3.

Not only a higher efficiency in the contour evolution is
achieved but also the PLS algorithm is simplified. Now, the
DCE module is supported by only one 3x3 directional tem-
plate per direction instead of the four operations required
for the structure in [2].

2.3. Topologic transformations

When the number of active contours does not coincide
with the number of objects into the scene the collision be-
tween different contours (or different parts of the same con-
tour) may occur. In [2] a solution to manage the changes



Fig. 3. The contour evolution along very narrow cavities
with the original PLS algorithm (first row) is less efficient
than that with the new approach (second row).

of topology supported on local CNN-operations was pro-
posed. The approach is based on the preventing of collisions
between contours and the controlled split of these contours
followed by the merge of the new ones before the collision.
This operations of split and merge are supported by the pre-
vious detected collision points. Nevertheless not every col-
lision point can guarantee the changes in topology which
makes this approach a rather conservative method of reso-
lution of topological transformations (see Fig. 5). On the
other hand, the changes of topology are based onpossible
collision points and no on real collisions between contours
which have been previously prevented. Therefore they can
appear situations where topological transformations are ap-
proached even though they are not required (see Fig. 6).

The commented strategy represents a compromise be-
tween complexity and accuracy in the management of topo-
logical transformations into the contour context where a con-
siderable effort is required to keep well defined the result-
ing contours. This requirement is dramatically relaxed into
a region propagation framework where the contours come
defined as frontier pixels of regions into the image space
[1]. When two contours collide the collision points do not
longer belong to the set of frontier pixels of the associated
regions and consequently they neither belong to the set of
contour pixels. We propose to face the changes of topology
into the region context by means of the three operations in-
dicated in Fig. 4. The contours are transformed in regions
by means of a hole filling operation together with a one-step
morphological opening (erosion+dilation). Finally they are
giving back to the contour context by a binary edge detec-
tion which extracts the set of frontier pixels of the regions.

This strategy to manage the topologic transformations
has a clearly higher performance than that reported in [2]
and attends the changes of topologywheneverthey are re-
quired (Fig. 5). On the other hand, since now the handling
of the topologic transformation is supported by real colli-
sion between contours, the changes of topology are attended
onlywhen they are actually required (Fig. 6).

The new proposal also outperforms the contour-based
approach in the implementation performance: only three
isotropic 3x3 linear templates are required instead of the 18
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Fig. 4. Flow diagram of the operations for the new topologic
transformations module.

directional templates reported in [2].

Fig. 5. In this example, the required topological transforma-
tions cannot be approached by only local operations based
on the proposal in [2] (first row). However the required
topological transformations are correctly attended with the
new approach (second row).

3. IMPLEMENTATION

Fig. 7 shows the flow diagram of the proposed PLS al-
gorithm PLS intended for its implementation onto the CN-
NUM [4]. For the CNN operations the initial state, the input
and the fixed state map are labelled with A, B and F respec-
tively. The result of those CNN operations where the A
or B labels are missing is independent of the initial state
or the input. The dark gray items represent the external
data provided by the user. They include input images (the
external potential and the initial contour images), weights
(kext, kint andkinf to weigh the influence of the external
potential, internal potential and inflating/deflating potential
respectively) and the switchsinf to select between inflating
(+1) and deflating (-1) potential, estimated in the balloon
potential estimation module (BPE).

The templates for the DCE and DCT operations are de-
rived by the rules showing in Fig. 8. The directional gradi-
ent (D Gr) is performed by the Sobel operator. The remain-
der of the processing steps consists of simple binary logical



Fig. 6. With the original PLS algorithm a change of topol-
ogy appears even though it is not required (first row). With
the new proposal only changes of topology are attended
where real contour collisions appear (second row).

operations and well-known propagative and non-propagative
analogic CNN operations. In Table 1, the execution times
for each module of the algorithm in Fig. 7 are gathered.
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Fig. 7. Flow diagram of the new PLS algorithm containing
all the implemented CNN operations.

4. CONCLUSIONS

Pixel-level snakes represent a cellular active contour tech-
nique which has demonstrated a high performance in multi-
ple active contour applications. In this paper, the associated
algorithm has been analyzed and some limitations and ex-
ceptions have been discussed leading to new proposals to
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Fig. 8. Patterns for DCE and DCT (North direction).

IPE 40µs DCE 60µs
BPE 750µs DCT 160µs
GFE 250µs TP 760µs

Table 1. Time of processing of the modules in the PLS
algorithm extracted from the implementation on the 64x64
CNNUM chip (one iteration along a cardinal direction).

increase the performance of the PLS. The new algorithm
with all the functionalities requires less than4ms to com-
plete one cycle running in the 64x64 CNNUM chip [5]. We
have observed that in real time applications like video ob-
ject segmentation and tracking less than ten iterations per
frame are usually needed. Therefore, even with the full ver-
sion of the algorithm the processing of 25 frame/s is easily
achieved. Furthermore in the most of the practical cases
not all the functionalities are needed at the same time which
considerably reduces the computational effort.
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